If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12w^2+59w=0
a = 12; b = 59; c = 0;
Δ = b2-4ac
Δ = 592-4·12·0
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-59}{2*12}=\frac{-118}{24} =-4+11/12 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+59}{2*12}=\frac{0}{24} =0 $
| m3+2m+6=0 | | 9n^2-2=12n | | 2-2x3=-3 | | 20x^2+15x-575=0 | | 16x+48=4x+96 | | 0,8•x=1 | | 9x^2-49=9 | | 7r-6=6.7r-6 | | 64÷16=t^2 | | 3-8x=-9x+1 | | (а-10)х(а/10)=200a= | | 8y-1y=7y | | -4x+7=5x+9 | | (2x-4)^2=25 | | 3x-x+3-2=4x+7 | | 2x-6+x+7=37 | | 2x-6+x+7=38 | | 3x-1=43 | | 4=x/2-1 | | 5x+4=4x=0 | | n/8=49/56 | | 8-3n=2+2n | | 508*3x=17780 | | 3(5x-7)-2(9x-11)=10 | | x+15=3x-18 | | 3x-5(x-2)=-7+5x+3 | | 5x-4x=-6x+42 | | 5x2-19x+18=0 | | 2/7z-2=9/72 | | 4z-6=32 | | 6n-3(5n+2)=4(1-n) | | 0.68+0.34t=0.2t+5.5 |